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ABSTRACT

The scattering of electromagnetic waves is considered using the
integral equation form of Maxwell's equations for the electric field,
These equations are of a form similar but not identical to those arising
in quantum mechanical scattering theory. The homogeneous integral
solution procedure of Sams and Kouri is adapted to these field equations
to derive Volterra integral equations of the second kind for "modified
field functions'". A quadrature solution procedure is examined for the

solution of the Volterra equations and its merits discussed.
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I. INTRODUCTION

The purpose of this note is to point out a computational procedure
for solving Maxwell's equations for scattering of electromagnetic waves,
We employ Maxwell's equations expressed in integral form. The present
section does not contain anything new but is presented to establish nota~
tion and the approach to be pursued. Our formulation of the equations
is essentially that presented by Newton in his reference work on wave
1-5

and particle scattering.

Maxwell's equations in differentiated form may be written as

TXVXE -KE =K 1)E +Tx[(t - WHTRE]

where the index of refraction V]/ is given by
V]’Q— ]
= € +UTL G/, (2)
Here fi, represents the magnetic permeability, € is the
dielectric constant, is the conductivity and (O the

Eircular‘frequency of the radiation. The refractive index Ya/' and
permeability fi, in general are tensor quantities and need not
Vbe uniform. Thus, the scattering medium need not be homogeneous or
isotropic. For the case where rL is not a tensor (isotropic
medium), Eq. (1) may be written as
- —_

TATRE ~KE = K- E+KHTRIX (UXE)

(3)



and
(4)

To convert Egs. (1) or (3) into integral equations, we employ the

2
- LD
tensor Green's function [’](kj R,}/L/) satisfying

Tx (TxT) -k'T = 1 SR-7) )

which may be shown to bel_3

= e -2 == - -
(7, 7= (T +W°TV) explaklR-71)
Y [ -7

(6)

(This of course is the causal Green's function so that purely outgoing

scattered waves will result). The resulting integral equation for the

electric field is

oot = o) o o1 B, o) i
Cln™ 1) - E (&9, )+ 77k [ - DT X E (v, )] |

(7)

where go(ﬁv,ﬁ)

radiation .and the label 7/

is the field of the incident electromagnetic

denotes the initial polarization (relative

to 1? » the propagation vector, as the Z axis). Thus, one type

~initial radiation could be



'é’o(m}r-z) = exp(AR®-T) X,
(8)

rola
which is a plane wave with circular polarization vector J{ v ('V = ii)
For the present discussion, it is convenient to expand the electric fields
—_ —

6 and 5 o and the Green's function in the basis of wvector

spherical ha]:‘monic:sl’3 so that

= W)x

r'(k) ) ’ kILI’L )*JZF_(; YJ—M rl)\)\/(k R()}'L,)Y (}’L}{’i)
AX %)
and
= X\ TTN) Ay S
Cre, 2 )= 4T N A (R £)e X
EGvi)= LY BE, Y (R
TMA (10)
w%lere ) C+)/(k
F?“‘ﬂu,m) = Ug (ene ) W 5 "),
e ]
) (11)
P‘:‘ (k) e :n>) = __MJCkn<)wJ.(k/1>))
im
(12)
(—;b (k} R<;)'l>\): De(k}ﬂ>)ﬁ ,_,F» [u (ken RIAM ((m)]

(13)



and

:;:Foi_(k)' Ne, Rs) = - (u+1) UJUUQ)LO [kjl>)

R*rr!
(14)
-and all others are zero.

Th “the above ‘expressions, U (.ka) is tﬂéwkicatfi—spherical
Bessel function3 of order 3_ . ( + (k}z,) h is the Ricatti-
spherlcal Hankel funct10n3 of the first,klné -0of order ;J— and'%y

Lfé} itor CA)C+)/ ¥ we meani‘the derdvative of Ll:f (or CL> ¢4) )

with respect to }'L
These results are then employed to express the partial wave com-
ponents of the integral equation for the electric field (for an isotropic

medium) as

W _ (50 -1)
() = (. Ckr) )§__.4 /g;\)\' re”
TM,TM J JI7HA ik
)L”/l” )\l/)\/
2 T’ (n'
+l( ;" gdn F //, <) 7) nJM 'J'”M” }gjﬂM”}TIM;/v )
J™
Km h”
(15)
where
O . i R NG A
= L 7 Ay (n,) 1 (h -1 Y ,,m)-
o ,TM an Y:m )Y

(16)



For spherically symmetric scatterers, Eq. (16) reduces to

Alllx/’ 7 ) ,
(}l) = ("1) 5 p g " S)L”/R” [H ()1) _,1:;
TM,T"M" gs’ "MH )
(17)
AR
and the integral equation for EZ (/L) reduces to a set of
TM

three coupled equations given by

AN
ED’M(R) = (/(J‘(kh'} g?\%’ (SAO - 1)

7

g e T . A
+c1)7k ) gd“/ F;\A” (e, 25)[ N (’L/)'”‘EJMW)
?\” O

(18)

for >\/ >\/ )>\” equal to @} m and o . For purposes

of simplicity, we shall couch our discussion of a solution procedure

in terms of Eq. (18). However, the noniterative solution method pre-
sented herein can be applied to the general case of a nonisotropic
nonhomogeneous medium without any essential change. Finally, we comment
that these integral equations are very similar to those encountered in
quantum mechanical scattering where now the role of the potential is

taken by the quantity[})z(f\ - 4:] . We keep in mind that in the absence
of any dispersive medium, [] = 1 so that the "potential’ in

Eq. (18) tends to zero as one moves from the scattering region: into

free space.



IT. THE NONITERATIVE SOLUTION PROCEDURE

We now discuss the adaptation of the Sams~Kouri homogeneous integral
solution formalism6_7 to the present problem of scattering of electro-
magnetic waves. It is convenient to express Eq. (18) in a matrix form

as

=] T /
(r) + (—1)3’1215&/7/' lvv (N, h7)'g(”/)’éa’m(k)
(o

ém (r) = ,,%:r
(19)
where
AN
EQJ.M(&)]?\N = 6:”4 (/L),
(20)
T J
[/E w<)h7)1\>\/ = {;A/ m</ﬂ>))
(21)
[gjm]w = Uy (en) §n [85o-1]
(22)

and

[m], = S [0 -1,

(23)



7
It is next convenient to express the matrix r_. in the form

p—
—

J T T
:(:l (/7.<)ﬂ7); g1(ﬂ<)'?;/z(/l>)+-é}

dﬂ ~ 3 q
(24)
T T T
where ;;1 R ;;Tr 9 and /3/3 are diagohal matrices
given by
2;15;(n3:: i<541)V1-uy(kn)/%R)
~T 4 (25)
.jiee[n) = &huj(k“))
(26)
T = 7 (kn)
?ih/lmm] - Zuj J
(27)
J 2 (+)
CRRCIERICEY W ) /kn,
(28)
J )
T ) = dw;(’m))
lee dn
(29)
T ) )
jﬁ;{mmm) =L wJ, (kn))

(30)



J i
T — o] u_ ) /k
jBoo(/L) £ [ ] J )
(31)
T T ~ LA
T gee ) = 4 [se1)] M:r(kﬂ)/k)
(32)
: J
/'\/
( =
J‘:g o r) = O,
.‘7(33)
T
~while ? Y has only two nonzero eleménts given by
T T i 1/f )
(n) = F,. = il3@en o (kr)/k.
_.,;JLLFOQ T Yeo ] T (kr)/ (34)

We may now employ Eq, (24) and explicitly eliminate the /7,< and U5

*‘vyariables to obtain for Eq. (19) the result

§J,M[n)/ U [r1+(*i)/e 9'/ (/1) Jg’/ (R')* VVI[/L’) 8 (iz,’)//z
+-1)7 k" EF (n). ggrr

(R) e m(n’) £ (/z')d/L

=JM
v’k :71* fdn 3:(@’) VV'(/?,) 6 v )//L

¢ b4 N T ! 4
+-1)7k ,353 (n)e ydnf F ) mw) & V73 )
b n = 1 = o

(35)



7 T I’
where by :E;T é%) and \)’ ()  we mean
3

= ~ Y
9’ (n) = ¢ ?, (n) ) (36)

(37)

(Here it is important to note that the matrices and

= 1 = 2

A z;’J’
commute and the matrices ‘;:SJ— and 2y commute). We now
Q —

follow Sams and Kouri6 and simply add and subtract the integrais

T, J It g :
0"k T, ) g F e mw)e € gy n)da’
= n = == =
(38)

and

(39)

in Eq. (35) to obtain
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oo
- — T 2 /, T Cr/
éJ’M(M = /gjmz + 1) k {dm [gl(n).gi(ﬂ)

T T
(inm)o I, (/z’)]- mn')- £

(n’
= TM /

n
T2 , Jr J’/ J J , , ,
OV S [ o - F o F o o)

' T T Jr T
'{/3\:1(/1]'; + 'Q‘:&(Q}.Q
(40)
Here the constant matrices CT and D T are defined by
oé i =N
J I 2 T
C'=(-1) k YC’UL /\ZLZ(R]'M(R}°§D_M(/1)
— O - — e~
(41)
and
> J
J T, 2
D7 = )7k | F ) print- € 0.
= 0 - (42)

In order to solve Eq. (40), we now write the electrie field 6 M (r)]
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where clearly

éJ'M (plir) = 7];7(70//1,)

—

Jz
YA r\-f J

%’)‘ E wlpin')

+(-1) kf”l”[rfr OF ?(M m:?(//&)]
(4)

</(,L EsmPin) 5 p=0,1,2

and

L toln) = Ug(n),

(45)
, T
,J;T (LIn) = 2?1 (),
(46)
J/
]/; J_(7.1/7,3 = 953 ().
¢47)

We now note that Eqs. (41) - (42) constitute a set of algebraic equations
J

. J D .
fior the constant matrices (j and given by

S~
o

n
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J

[~ &)
7 J
T_ 1) hljd/b ;7?2 (n)-@(a)'[g (oiw
o — — — —~

WDT]

o
=J

1Y@

(48)

-
—

and

2 > J J
D7 0’k Yk Ty wiepat g o) + gtk €
= o =
+gTM (21n) - ’:r —] (49)

These clearly may be solved as soon as the E TM (}allt,_;) " )D:O, ’1 , 2

are known by solving Eqs. (44), 1D'ZTCb 4.) 2 . The Egs. (44) are
of course recognized as Volterra integral equations of the second.kind3
and there are a variety of procedures which éan'bé’employed in thgir

f‘éolution. We here wish to point out one particular approach which is
noniterative in nature and which has been applied to quite éimilar
equations occuring in quantum mechanical scattering with consideréﬁle

 success. We now insert a Newton-Cotes quadrature (e.g., the trapezoidal

rule) for the integration to obtain

é;ﬂ(’om”‘) = ;jqo//z/n)

2 ¥ 3 7 )
+(—1)jk W;t fj(nm)'gimf)- ;fi (fl,n)'gz(ﬂﬁ) e (ﬂt),&‘y (i"’”{)~
=1 | B = =JH
S;I ;) - }ra— |
’5 (T W= e F o)

(50)
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It is of interest to examine the quantity in brackets above for /t'-‘-/n .

It is readily seen to equal \//VL where
ol J
V = d [9: () F (/z)]}
oM At =4 =13 -
=R

(51)

since the first term vanishes. (Here we see an important difference
between the electromagnetic scattering problem and the quantum mechanical
problem. Unless there are velocity dependent potentials occuring in

the quantum mechanical problem, only the term

wJ J T T

. - . r d thi
zl(ﬂm) gi(ﬂ%) Q_:i (R,.) gl(nt) occurs an is
is readily seen to vanish at /‘(t = /‘LM . The result ig that for

quantum mechanical problems, the analogue of Eq. (50) may be solved

without necessitating any matrix inversions). Thus, in order to solve

Eq. (50) for the '"modified field functions" g (}0//‘1, ) at
Z2THM
the point /'Lm s it is necessary to compute the inverse of the

T,

'matrixi"\/ » M ( I )(~1) kw . However, it is stressed that, for
roem =0 "

the present problem, this is simply a 3x3 matrix and in general, the

dimensionality of the matrix to be inverted is the same as the dimension~-

ality of the matrix g (n) . This is to be contrasted with what

one encounters in a direct quadrature solution of Eq. (19) where omne

obtains

* R [
g::rmm”‘) = Ysltm) FCA)RL Wt = (”"‘)nt)'@mt) § n™.
= }C’i =

(52)
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Even if one uses a quadrature scheme which takes account of the cusp
occuring in ljiv_ , one must invert a matrix whose order is 3NxN
where N is the number of quadrature points employed.

It should also be noted that once the functions ég:TrI(P/AJ

are obtained out into the free space region, the integrals required to

T I
solve Eqs. (48) - (49) for E; and D are known.
o= =
Thus, the complete specification of the field 6? (nr) in space is

~JIM
then possible,

Finally, it is noted that one might also desire to attempt the
solution of Eqs. (44) by iteration. Then in contrast to an iterative
solution of Eq. (19), the convergence of which is governed by the same
conditions as the Born-Neumann procedure in quantum mechanics,l the
conditions for convergence of iteration of Egqs. (44) are those of an
integral equation with a triangular kernal (i.e., V<(R) R/) - ¢ for

}Z/?>,fL Y. These conditions for the quantum mechanical scattering
problem are discussed by Newton.8 Thus one may hope for convergence

under more general conditions in the case of Eqs. (44).
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